NESTED COISOTROPICS AND SECOND MICROLOCALIZATION

ABSTRACT. Our first goal is to understand the relationship between second microlocal
pseudodifferential calculi ¥y p,(C1), ¥a 5 (Cz) associated with nested coisotropic submanifolds

Cy C C;. Then we consider the relationship between the corresponding second wavefront
sets: 2WF¢, C SN(C1), 2WFc, C SN(Cs).

1. INTRODUCTION

In this paper, we consider chains of linear coisotropic submanifolds of 7*T". By chains,
we mean sequences of nested coisotropics

CpC...CC2C01CT*T".

The codimension of C;,; is strictly greater than that of C;, so p < n.
This project is motivated by the paper [1], in which the authors second microlocalize at
sequences of nested primitive submodules inside Z™.

2. CALCULI ASSOCIATED TO NESTED COISOTROPICS

We speculate a relationship between the second microlocal calculi determined by these
coisotropics.

Conjecture 2.1. Let Cj11 CC; CT*T". Let

Be,py t [T7T™; Cign] — TTT"
be the blowdown map for Cjy1. Choose B € \IIgZZ(CjH) satisfying the condition
@.1) 2WEF(B) 1 6L, (CACr ) = 0.

Then
BoWy(Cj) C Won(Cit)

The idea behind this conjecture is as follows. As C; is the larger coisotropic, its spherical
normal is smaller than that of C; 44 (i.e., is comprised of fewer normal directions). Consider a
symbol function in the C; calculus. This is a function which may be singular at C; x {h = 0},
but whose singularity is resolved in the blowup. Since the introduction of fewer normal
directions is sufficient to resolve this hypothetical singularity, introducing a greater number
of normal directions would certainly resolve such a singularity. However, since the C;;-total
symbol space is the blowup of C;4; x {0} C C; x {0}, we must first apply a cutoff and
specifically consider the singularity of the symbol at C;1; x {0}. So we conjecture that the
symbol, after application of cutoff, may be regarded as a symbol in the C;;; calculus. In
Figure 1, Co C C; is at the center of the sphere (n = 3). We are cutting off away from the
line segments to the left and right of the sphere. In particular:
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FiGure 1. Lifting part of C; to the Co-principal symbol space

Conjecture 2.2. Let Cj1 C Cj, as above. Let Re; denote the residual algebra in Wy (C;),
and likewise for Re,,,. For any operator B fulfilling condition (2.1), we have

B¥e, C Re,,,-
More specifically, B%lcj C %lcjﬂ for each | € R.
We have proved Conjecture 2.2 in the model case:
Lemma 2.3. For0<p<(n—1) and ¢ > 1, withp+q <n, let
Cin=T"x{&=...=§{=...=§,=0}

and
C;i=T"x{{&E=...=§ =0}
Suppose B € mg;2(6j+1) satisfies the cutoff condition (2.1). Then

BRe, C R,
for each | € R.

Note that since there are fewer characteristic operators for C;, we have R¢,,, C ¥,.
Before proving Lemma 2.3, we give some examples.

Example 2.4. This example takes place in T*T?. Let C, = o be the zero section, and let
Ci = {& = 0}. Let R be any element of Rp . We will construct an operator A in the Cy-
calculus that satisfies condition (2.1), then show that AR € ¢, (i.e., that AR is involutizing
w.r.t. Ca). More explicitly, since hD,,, hD,, generate the module of operators in W (T?)
that are characteristic on Cy, we show that

h™*(hD,)*ARu € L*(T?) and h~*(hD,,)*ARu € L*(T?)

(for u € L*(T?) and k € Z>).

We want the microsupport of A to be disjoint from the lift of C;\Ca to S = [T*T?;Cy].
In this example, condition (2.1) is satisfied if || is greater than |&| (i.e., (&1, &) lives in a
cone away from g, '(C1\C2)), and also & > h. (More generally, condition (2.1) would hold
if |&1| > c|&]| for any positive constant ¢, no matter how small.) We therefore define

(G (%)] € Uy (Cy),

where 1 € C*°(R) is supported in [1,00). Then, we compute

k .
DhARu) = | (%) R0ty (%) x(a.y) Ruly) dyds
2

A= hOpl




_ // (%)k (f—hl)kA’;” [e%(’”‘y)'f] Y (%) X(z, y)Ru(y) dydg

k .
- / / (%) eIy (%) X ) A2 Ru(y) dydg + 05550(Cy).
2

Recall the convention that A, = —82/8y,2. Note that Ay/*Ru € L2(T2) because R € R, -
Note also that £ /&1 < 1 on the microsupport of A. This is crucial: if the amplitude becomes
any worse, L?-boundedness may fail. Hence, AR is involutizing with respect to hD,,. This
argument works even for odd values of k, since h2A taken to a fractional power is well-defined
as a pseudodifferential operator.

If instead we apply D,,, we use the fact that

D! ARu = AD% Ru.

Since R is involutizing with respect to {{; = 0}, and since the symbol of A belongs to
SO0 (S2), we have AD® Ru € L*(T?).

e,

FIGURE 2. Microsupport of cutoff when Cy = 0 and C; = {& = 0} in T*T?

In Figure 2, the shaded region shows the microsupport of the cutoff operator when Cy = o
and Cy = {& = 0} in T*T? (base variables excluded from figure).

Example 2.5. Consider the zero section in 7*T*, nested inside the codimension two coisotropic
Cy ={& = & = 0}. In this case, A € \I’g:?L(T“; o) satisfying condition (2.1) would be micro-
supported in {£2 + &2 > £2 + £2}. Thus, we would define

" VE &
VE+E&+1?

A= hOp1

for v as before.

Proof of Lemma 2.3. For simplicity, we prove the lemma in the case [ = 0. Define A €
\Ifg:?l(cjﬂ) as follows:

(2.2) A="0p, | jat s

\/Cp+1£;%+1 ot gl T
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for ¢p € C*(R) supported on [1,00); here, ¢,41,...,Cpq are positive constants. Note that
while we used the left quantization to define A, any other quantization map would have
worked just as well.

Then, for u € L*(T") and R € 9%8]_, simultaneously apply the operators Dz "', ..., Da,"
to ARu(z). Set m = >_7 |, m,y;. Rewrite the phase term as

—m/2
(@] b

Next, integrate by parts, shifting the fractional Laplacian over to the term Ru(y), as the
symbol of A is independent of y. Finally, use the fact that

2 1
P+
4. 4+ 7 cpri

, 1 <1 <q

on the microsupport of A, to prove L*-boundedness. Application of D,, ..., D, is handled
using translation invariance, as in Example 2.4.

We include the positive constants in the definition (2.2) so that the conic microsupport
of A may be as close to 50_] 11(Cj\Cj+1) as we like. Therefore, any B satisfying condition
(2.1) is microsupported within the elliptic set of one of these operators A. Thus, by elliptic
regularity, B may be factored as

B=AA+ S
for some Aq € Wg:g(cj+1) and some S € %2]-+1' Hence,
BR = AjAR + SR.

We just proved that AR € §R2j+1. Then AgAR € §R2j+1, since the residual operators are an
ideal.
Claim: For R € R and S € Re, , SoRe R, .
Proof of Claim: We show
mi Mp+q . 2 n 2 n
Dt DyvtaSR: L (T") — L5(T™)
for any m; € Z>o. But this is just the composition of two L?*-bounded operators. Certainly
R : L*(T") — L3*(T"); in fact, we have the much stronger mapping property that Ru €
I135,(C;) for w € L*(T"). Finally,
m Mpt+q Q . T2(N 2(mn
Dyt Dyt L (T") — L*(T™),
since S € §R2]_+1. Thus, the claim is proved. Note that the order of the composition is
important: it is not the case that RS € 3‘3&_“.
Therefore, BR € ®¢. . O

JE+. & e;SQO(S@“>.

tot
\/CPJrlf;%—'rl + ot Cprgbprg T B
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Proof of Conjecture 2.1 in model case. Let Cj11 C C; C T*T" be as in the proof of Lemma
2.3. We ask: Given A € \Dg:g(Cj+1) of the form (2.2) and P € \Ifgf;f(cj), is AoP € \Il;T};Ll(Cj+l)?

Locally, let p € S%° <ngt) be a total symbol for P.

First, we show formally that AP = "Op,(a - p) + AR for R € §R87_. Due to the reduction
theorem, modulo an element of R € Ejo, we may choose P = "Op,(p). Therefore, modulo
AR € %&_H, we consider "Opj(a)o"Op,(p). As in the proof of composition in [4], we compute

"Opy(a) 0 "Op, (p) = (21h) 2" / eFED €Ty (1 ) (2, y)alE; W)ply, n; h) dzdédn

= (2zh) ™" / e ==y (x,y)a(n; h)p(y, m; h) dn + 0,50 (Cy)

="Op;(a - p),
using stationary phase. More generally, for P € \Iﬂ;,j (C;), we have AP € \I/;lhl (Cjs1) + éRlch-
Finally, we have a - p € S%Y (Stcfjjl) O

In particular, if a Lagrangian £ C C, then for each m, |
BoWyi(C) € W3 (L),
where B € Wy') (L) is microsupported away from 3;'(C\L).

3. SECOND WAVEFRONTS OF NESTED COISOTROPICS

Now suppose we have coisotropic submanifolds Co C C; C T*T"™. Then
Cox{h=0}CC x{h=0}CT"X x{h=0}=0(T"X x[0,1)) CT*X x [0,1).
Take p € Cy. Then T),(C2) < T,,(Cy1). This descends to a map of normal spaces
T,(T*X) T,(T*X)
T,(C) T(C)
Thus, we have a natural bundle morphism N(Cy) — N(C;). Hence, there is a canonical map
m: SN(Cy) — SN(Cy).

In words, the intuitive idea here is that since C, is smaller than Cy, its spherical normal
is larger; i.e., there are more (unit) normal directions for Cy than for C;. This map =
“condenses” or “collapses” all the normal directions in SN(Cy) down to the relatively few
normal directions in SN(C;). How?

We are ready to pose a conjecture relating the second wavefront sets associated to C; and
Cy. Note that for [ € R, k € Z>g, Co C C; implies I(kl) (Cy) C I(I‘é) (C1), as M, D Mg,

= Np(Ca) — Np(C1) =

Conjecture 3.1. Letl,m € R, k € Z>¢, and u € I(’?)(Cg). Let S C SN(Cy). Then
'WE (u)nS =0 = *WFg (u) N (S) = 0.

We give the heuristic idea behind this conjecture. Since Cy is contained in Cy, there are a
greater number of characteristic operators associated to the smaller coisotropic Co. Therefore,
all else being equal, it is a stronger condition for a distribution u to have coisotropic regularity
with respect to Cy. Translating this into the second microlocal language, it is easier for u to



have Cy-second wavefront (in SN (Cy)) than Cy-second wavefront (in SN (Cy)). Hence, if there
is no Co-wavefront in some subset S of SN (Cs), we hypothesize that there is no C;-wavefront
in the corresponding subset 7(S) of SN(Cy).
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